whatsappWhatsApp: +79119522521
telegramTelegram: +79119522521
Логин Пароль
и
для авторов
Выполненные работы

Теоретическая механика



Тихоокеанский государственный университет


Учебные материалы

Методичка 1989 (Тарг). Титульный листМетодичка 1989 (Тарг) Готовые работы
 

Государственный комитет СССР по народному образованию
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА
Методические указания и контрольные задания
для студентов-заочников
машиностроительных, строительных,
транспортных, приборостроительных специальностей
высших учебных заведений
Издание четвертое
Под редакцией проф. С.М. Тарга
Москва Высшая школа 1989


Стоимость решения задач по Таргу 90 руб. за задачу в электронном виде, оформление в Word.
Вариант задания выбирается по двум последним цифрам студенческого шифра. Предпоследняя цифра - номер рисунка, последняя - номер варианта.
Предоставляем подробные решения задач по следующим разделам:


Динамика

Задача Д1
Груз D массой m, получив в точке A начальную скорость v0 движется в изогнутой трубе AВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 — Д1.9, табл. Д1). На участке AВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения) ; трением груза о трубу на участке AВ пренебречь. В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действуют сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние AВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т. е. х = f(t), где х = BD.

Задача Д2
Груз 1 массой m укреплен на пружинной подвеске в лифте (рис. Д2.0 — Д2.9, табл. Д2). Лифт движется вертикально по закону z = 0,5α1t2 + α2sin(ωt) + α3cos(ωt) (ось z направлена по вертикали вверх; z выражено в метрах, t — в секундах). На груз действует сила сопротивления среды R = μv, где v — скорость груза по отношению к лифту. Найти закон движения груза по отношению к лифту, т. е. х = f(t); начало координат поместить в точке, где находится прикрепленный к грузу конец пружины, когда пружина не деформирована. При этом во избежание ошибок в знаках направить ось х в сторону удлинения пружины, а груз изобразить в положении, при котором х>0, т.е. пружина растянута. При подсчетах можно принять g = 10 м/с2. Массой пружин и соединительной планки 2 пренебречь. В таблице обозначено: c1, с2, c3 — коэффициенты жесткости пружин, λ0 — удлинение пружины с эквивалентной жесткостью в начальный момент времени t = 0, v0 — начальная скорость груза по отношению к лифту (направлена вертикально вверх). Прочерк в столбцах c1, с2, c3 означает, что соответствующая пружина отсутствует и на чертеже изображаться не должна. Если при этом конец одной из оставшихся пружин окажется свободным, его следует прикрепить в соответствующем месте или к грузу или к потолку (полу) лифта; то же следует сделать, если свободными окажутся соединенные планкой 2 концы обеих оставшихся пружин. Условие μ = 0 означает, что сила сопротивления R отсутствует.

Задача Д3
Механическая система состоит из грузов D1 массой m1 = 2 кг и D2 массой m2 = 6 кг и из прямоугольной вертикальной плиты массой m3 = 12 кг, движущейся вдоль горизонтальных направляющих (рис. Д3.0 — Д3.9, табл. Д3). В момент времени t0 = 0, когда система находилась в покое, под действием внутренних сил грузы начинают двигаться по желобам, представляющим собой окружности радиусов r = 0,4 м и R = 0,8 м. При движении грузов угол φ1 = ∠A2C3D1 изменяется по закону φ1 = f1(t), а угол φ2 = ∠A2C3D2 — по закону φ2 = f2(t). В табл. ДЗ эти зависимости даны отдельно для рис. 0—4 и 5—9, где φ выражено в радианах, t — в секундах. Считая грузы материальными точками и пренебрегая всеми сопротивлениями, определить закон изменения со временем величины, указанной в таблице в столбце «Найти», т. е. x3 = t3(t) и N = f(t), где x3 — координата центра C3 плиты (зависимость x3 = f3(t) определяет закон движения плиты), N — полная нормальная реакция направляющих.

Задача Д4
Механическая система состоит из прямоугольной вертикальной плиты 1 массой m1 = 18 кг, движущейся вдоль горизонтальных направляющих, и груза D массой m2 = 6 кг (рис. Д4.0 — Д4.9, табл. Д4). В момент времени t0 = 0, когда скорость плиты u0 = 2 м/с, груз под действием внутренних сил начинает двигаться по желобу плиты. На рис. 0—3 желоб КЕ прямолинейный и при движении груза расстояние s = AD изменяется по закону s = f1(t), а на рис. 4—9 желоб — окружность радиуса R = 0,8 м и при движении груза угол φ = ∟AC1D изменяется по закону ф = f2(t). В табл. Д4 эти зависимости даны отдельно для рис. 0 и 1, для рис. 2 и 3 и т. д., где s выражено в метрах, φ — в радианах» t — в секундах. Считая груз материальной точкой и пренебрегая всеми сопротивлениями, определить зависимость u = f(t), т. е. скорость плиты как функцию времени.

Задача Д5
Однородная горизонтальная платформа (круглая радиуса R или прямоугольная со сторонами R и 2R, где R = 1,2 м) массой m1 = 24 кг вращается с угловой скоростью ω0 = 10 с-1 вокруг вертикальной оси z, отстоящей от центра масс C платформы на расстоянии OC = b (рис. Д5.0 —Д5.9, табл. Д5); размеры для всех прямоугольных платформ показаны на рис. Д5.0а (вид сверху). В момент времени t0 = 0 по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой m2 = 8 кг по закону s = AD = F(t) где s выражено в метрах, t — в секундах. Одновременно на платформы начинает действовать пара сил с моментом М (задан в ньютонометрах; при М<0 его направление противоположно показанному на рисунках). Определить, пренебрегая массой вала, зависимость ω = f(t), т. е. угловую скорость платформы, как функцию времени. На всех рисунках груз D показан в положении, при котором s>0 (когда s<0, груз находится по другую сторону от точки А). Изображая чертеж решаемой задачи, провести ось z на заданном расстоянии OC = b от центра С.

Задача Д6
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0,3 м, r3 = 0,1 м и радиусом инерции относительно оси вращения ρ3 = 0,2 м, блока 4 радиуса R4 = 0,2 м и катка (или подвижного блока) 5 (рис. Д6.0 — Д6.9, табл. Д6); тело 5 считать сплошным однородным цилиндром, а массу блока 4 — равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости c. Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках). Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0,2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: v1, v2, vC5 — скорости грузов 1, 2 и центра масс тела 5 соответственно, ω3 и ω4 — угловые скорости тел 3 и 4. Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 2), катятся по плоскостям без скольжения. На всех рисунках не изображать груз 2, если m2 = 0; остальные тела должны изображаться и тогда, когда их масса равна нулю.

Задача Д7
Барабан радиуса R весом P имеет выточку (как у катушки) радиуса r = 0,6R (рис. Д7.0 — Д7.9, табл. Д7). К концам намотанных на барабан нитей приложены постоянные силы F1 и F2, направления которых определяются углом β; кроме сил на барабан действует пара с моментом М; когда в таблице М<0, направление момента противоположно показанному на рисунке. При движении, начинающемся из состояния покоя, барабан катится без скольжения по шероховатой наклонной плоскости с углом наклона α так, как показано на рисунках. Пренебрегая сопротивлением качению, определить закон движения центра масс С барабана, т. е. xC = f(t), и наименьшее значение коэффициента трения f о плоскость, при котором возможно качение без скольжения. Барабан рассматривать как сплошной однородный цилиндр радиуса R.

Задача Д8
Вертикальный вал АК (рис. Д8.0 — Д8.9), вращающийся с постоянной угловой скоростью ω = 10 с-1, закреплен подпятником в точке A и цилиндрическим подшипником в точке, указанной в табл. Д8 в столбце 2 (АВ = BD = DE = ЕК = a). К валу жестко прикреплены тонкий однородный ломаный стержень массой m = 10 кг, состоящий из частей 1 и 2 (размеры частей стержня показаны на рисунках, где b = 0,1 м, а их массы m1 и m2 пропорциональны длинам), и невесомый стержень длиной l = 4b с точечной массой m3 = 3 кг на конце; оба стержня лежат в одной плоскости. Точки крепления стержней указаны в таблице в столбцах 3 и 4, а углы α, β, γ, φ даны в столбцах 5—8. Пренебрегая весом вала, определить реакции подпятника и подшипника. При подсчетах принять а = 0,6 м.

Задача Д9
Механизм, расположенный в горизонтальной плоскости, находится под действием приложенных сил в равновесии; положение равновесия определяется углами α, β, γ, φ, θ (рис. Д9.0 — Д9.9, табл. Д9а и Д9б). Длины стержней механизма (кривошипов) равны: l1 = 0,4 м, l4 = 0,6 м (размеры l2 и l3 произвольны); точка Е находится в середине соответствующего стержня. На ползун В механизма действует сила упругости пружины F; численно F = сλ, где с — коэффициент жесткости пружины, λ — ее деформация. Кроме того, на рис. 0 и 1 на ползун D действует сила Q, а на кривошип O1А — пара сил с моментом М; на рис. 2—9 на кривошипы O1А и O2D действуют пары сил с моментами М1 и M2. Определить, чему равна при равновесии деформация λ пружины, и указать, растянута пружина или сжата. Значения всех заданных величин приведены в табл. Д9а для рис. 0—4 и в табл. Д9б для рис. 5—9, где Q выражено в ньютонах, а М, М1, М2 — в ньютонометрах. Построение чертежа начинать со стержня, направление которого определяется углом α; для большей наглядности ползун с направляющими и пружину изобразить так, как в примере Д9 (см. рис. Д9, а также рис. Д9.10, б). Если на чертеже решаемого варианта задачи прикрепленный к ползуну В стержень окажется совмещенным с пружиной (как на рис. Д9.10, а), то пружину следует считать прикрепленной к ползуну с другой стороны (как на рис. Д9.10, б, где одновременно иначе изображены направляющие).

Задача Д10
Механическая система состоит из однородных ступенчатых шкивов 1 и 2, обмотанных нитями, грузов 3—6, прикрепленных к этим нитям, и невесомого блока (рис. Д10.0 — Д10.9, табл. Д10). Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом М, приложенной к одному из шкивов. Радиусы ступеней шкива 1 равны: R1 = 0,2 м, r1 — 0,1 м, а шкива 2 — R2 = 0,3 м, r2 = 0,15 м; их радиусы инерции относительно осей вращения равны соответственно ρ1 = 0,1 м и ρ2 = 0,2 м. Пренебрегая трением, определить ускорение груза, имеющего больший вес; веса Р1, …, Р6 шкивов и грузов заданы в таблице в ньютонах. Грузы, веса которых равны нулю, на чертеже не изображать (шкивы 1, 2 изображать всегда как части системы).

Задача Д11
Механическая система состоит из тел 1, 2, …, 5 весом P1, Р2, …, P5 соответственно, связанных друг с другом нитями, намотанными на ступенчатые блоки 1 и 2 (рис. Д11.0 — Д11.9, табл. Д11). Радиусы ступенчатых блоков 1 и 2 равны соответственно R1 = R, r1 = 0,4R, R2 = R, r2 = 0,8R. При вычислении моментов инерции все блоки, катки и колеса считать однородными сплошными цилиндрами радиуса R. На систему кроме сил тяжести действует сила F, приложенная к телу 3 или 4 (если тело 3 в систему не входит, сила приложена в точке В к тележке), и пары сил с моментами М1, M2, приложенные к блокам 1 и 2; когда М<0, направление момента противоположно показанному на рисунке. На участке нити, указанном в таблице в столбце «Пружина», включена пружина с коэффициентом жесткости с (например, если в столбце стоит АВ, то участок АВ является пружиной, если AD, то AD — пружина и т.д.); в начальный момент времени пружина не деформирована. Составить для системы уравнения Лагранжа и найти закон изменения обобщенной координаты x, т. е. x = f(t), считая, что движение начинается из состояния покоя; определить также частоту и период колебаний, совершаемых телами системы при ее движении (о выборе координаты x см. «Указания»). Прочерк в столбцах таблицы, где заданы веса, означает, что соответствующее тело в систему не входит (на чертеже не изображать), а ноль — что тело считается невесомым, но в систему входит; для колес, обозначенных номером 4, Р4 — их общий вес (вес платформы такой тележки не учитывается).

Задача Д12
Механизм, расположенный в вертикальной плоскости (рис. Д12.0 — Д12.9), состоит из ступенчатых колес 1 и 2 с радиусами R1 = 0,4 м, r1 = 0,2 м, R2 = 0,5 м, r2 = 0,3 м, имеющих неподвижные оси вращения; однородного стержня 3 длиной l =1,2 м, закрепленного шарниром на одном из концов; грузов 4 и 5, подвешенных к нитям, намотанным на колеса. На стержне расстояние АВ = 2l/3. Стержень 3 соединен с колесом 2 невесомым стержнем 6. Колеса 1 и 2 или находятся в зацеплении (рис. 0—4), или соединены невесомым стержнем 7 (рис. 5—9). К колесам и стержню 3 прикреплены пружины. В табл. Д12 заданы массы mi тел (кг) и коэффициенты жесткости ci пружин (Н/м). Прочерки в столбцах таблицы означают, что соответствующие тела или пружины в систему не входят (на чертеже эти тела и пружины не изображать); в результате в каждом конкретном варианте получается довольно простой механизм, содержащий три или даже два тела. Стержень 6 или 7 входит в состав механизма, когда в него входят оба тела, соединенные этим стержнем. В положениях, изображенных на рисунках, механизм находится в равновесии. Определить частоту и период малых колебаний системы около положения равновесия. Найти также, чему равно статическое удлинение (сжатие) пружины λст в положении равновесия. При подсчетах считать колеса 1 и 2 сплошными однородными цилиндрами радиусов R1 и R2 соответственно. Рассмотрим два примера решения этой задачи.

Кинематика

Задача К1
Задача К1а.

Точка В движется в плоскости xy (рис. К1.0 — К 1.9, табл. К1; траектория точки на рисунках показана условно). Закон движения точки задан уравнениями: x = f1(t), y = f2(t), где x и y выражены в сантиметрах, t — в секундах. Найти уравнение траектории точки; для момента времени t1 = 1 с определить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории. Зависимость x = f1(t) указана непосредственно на рисунках, а зависимость y = f2(t) дана в табл. Kl (для рис. 0—2 в столбце 2, для рис. 3—6 в столбце 3, для рис. 7—9 в столбце 4). Как и в задачах С1 — С4, номер рисунка выбирается по предпоследней цифре шифра, а номер условия в табл. К1 — по последней.
Задача К1б.
Точка движется по дуге окружности радиуса R = 2 м по закону s = f(t), заданному в табл. К1 в столбце 5 (s — в метрах, t — в секундах), где s =AM — расстояние точки от некоторого начала A, измеренное вдоль дуги окружности. Определить скорость и ускорение точки в момент времени t1 = 1 с. Изобразить на рисунке векторы v и a, считая, что точка в этот момент находится в положении M, а положительное направление отсчета s — от А к М.

Задача К2
Механизм состоит из ступенчатых колес 1—3, находящихся в зацеплении или связанных ременной передачей, зубчатой рейки 4 и груза 5, привязанного к концу нити, намотанной на одно из колес (рис. К2.0 — К2.9, табл. К2). Радиусы ступеней колес равны соответственно: у колеса 1 – r1 = 2 см, R1 = 4 см, у колеса 2 – r2 = 6 см, R2 = 8 см, у колеса 3 – r3 — 12 см, R3 = 16 см. На ободьях колес расположены точки A, В и С. В столбце «Дано» таблицы указан закон движения или закон изменения скорости ведущего звена механизма, где φ1(t) — закон вращения колеса 1, s2(f) — закон движения рейки 4, ω2(t) — закон изменения угловой скорости колеса 2, v5(t) — закон изменения скорости груза 5 и т. д. (везде φ выражено в радианах, s — в сантиметрах, t — в секундах). Положительное направление для φ и ω против хода часовой стрелки, для s4, s5 и v4, v5 — вниз. Определить в момент времени t1 = 2 с указанные в таблице в столбцах «Найти» скорости (v — линейные, ω — угловые) и ускорения (а — линейные, ε — угловые) соответствующих точек или тел (v5 — скорость груза 5 и т. д.).

Задача К3
Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна В или Е (рис. КЗ.0 — К3.7) или из стержней 1, 2, 3 и ползунов В и E (рис. К3.8, К3.9), соединенных друг с другом и с неподвижными опорами O1, O2 шарнирами; точка D находится в середине стержня АВ. Длины стержней равны соответственно l1 = 0,4 м, l2 = 1,2 м, l3 = 1,4 м, l4 = 0,6 м. Положение механизма определяется углами α, β, γ, φ, θ. Значения этих углов и других заданных величин указаны в табл. КЗа (для рис. 0—4) или в табл. КЗб (для рис. 5—9); при этом в табл. КЗа ω1 и ω4 — величины постоянные. Определить величины, указанные в таблицах в столбцах «Найти». Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки (например, угол γ на рис. 8 следует отложить от DB по ходу часовой стрелки, а на рис. 9 — против хода часовой стрелки и т. д.). Построение чертежа начинать со стержня, направление которого определяется углом ϕ; ползун с направляющими для большей наглядности изобразить так, как в примере КЗ (см. рис. КЗб). Заданные угловую скорость и угловое ускорение считать направ¬ленными против часовой стрелки, а заданные скорость vB и ускорение аB — от точки В к b (на рис. 5—9).

Задача К4
Прямоугольная пластина (рис. К4.0 — К4.4) или круглая пластина радиуса R = 60 см (рис. К4.5 — К4.9) вращается вокруг неподвижной оси по закону ϕ = f1(t), заданному в табл. К4. Положительное направление отсчета угла ϕ показано на рисунках дуговой стрелкой. На рис. 0, 1, 2, 5, 6 ось вращения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на рис. 3, 4, 7, 8, 9 ось вращения OO1 лежит в плоскости пластины (пластина вращается в пространстве). По пластине вдоль прямой BD (рис. 0—4) или по окружности радиуса R (рис. 5—9) движется точка М; закон ее относительного движения, т. е. зависимость s = AM = f2(t) (s выражено в сантиметрах, t — в секундах), задан в таблице отдельно для рис. 0—4 и для рис. 5—9; там же даны размеры b и l. На рисунках точка М показана в положении, при котором s = АМ>0 (при s<0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Статика

Задача С1
Жесткая рама, расположенная в вертикальной плоскости (рис. С1.0 — С1.9, табл. С1), закреплена в точке А шарнирно, а в точке В прикреплена или к невесомому стержню с шарнирами на концах, или к шарнирной опоре на катках. В точке С к раме привязан трос, перекинутый через блок и несущий на конце груз весом Р = 25 кН. На раму действуют пара сил с моментом М = 100 кН*м и две силы, значения, направления и точки приложения которых указаны в таблице (например, в условиях № 1 на раму действует сила F2 под углом 15° к горизонтальной оси, приложенная в точке D и сила F3 под углом 60° к горизонтальной оси, приложенная в точке E, и т. д.). Определить реакции связей в точках A, В, вызываемые действующими нагрузками. При окончательных расчетах принять а = 0,5 м.

Задача С2
Конструкция состоит из жесткого угольника и стержня, которые в точке С или соединены друг с другом шарнирно (рис. С2.0 — С2.5), или свободно опираются друг о друга (рис. С2.6 — С2.9). Внешними связями, наложенными на конструкцию, являются в точке А или шарнир, или жесткая заделка; в точке В или гладкая плоскость (рис. 0 и 1), или невесомый стержень ВВ' (рис. 2 и 3), или шарнир (рис. 4—9); в точке D или невесомый стержень DD' (рис. 0, 3, 8), или шарнирная опора на катках (рис. 7). На каждую конструкцию действуют: пара сил с моментом М = 60 кН*м, равномерно распределенная нагрузка интенсивности q = 20 кН/м и еще две силы. Эти силы, их направления и точки приложения указаны в табл. С2; там же в столбце «Нагруженный участок» указано, на каком участке действует распределенная нагрузка (например, в условиях № 1 на конструкцию действуют сила F2 под углом 60° к горизонтальной оси, приложенная в точке L, сила F4 под углом 30° к горизонтальной оси, приложенная в точке Е, и нагрузка, распределенная на участке СK). Определить реакции связей в точках А, В, С (для рис. 0,3,7,8 еще и в точке D), вызванные заданными нагрузками. При окончательных расчетах принять а = 0,2 м. Направление распределенной нагрузки на различных по расположению участках указано в табл. С2а.

Задача С3
Шесть невесомых стержней соединены своими концами шарнирно друг с другом в двух узлах и прикреплены другими концами (тоже шарнирно) к неподвижным опорам А, В, С, D (рис. СЗ.0 — С3.9, табл. СЗ). Стержни и узлы (узлы расположены в вершинах H, К, L или М прямоугольного параллелепипеда) на рисунках не показаны и должны быть изображены решающим задачу по данным таблицы. В узле, который в каждом столбце таблицы указан первым, приложена сила Р = 200 Н; во втором узле приложена сила Q = 100 Н. Сила Р образует с положительными направлениями координатных осей х, у, z углы, равные соответственно α1 = 45°, β1 = 60°, γ1 = 60°, а сила Q — углы α2 = 60°, β2 = 45°, γ2 = 60°; направления осей х, у, z для всех рисунков показаны на рис. СЗ.0. Грани параллелепипеда, параллельные плоскости ху, — квадраты. Диагонали других боковых граней образуют с плоскостью ху угол φ = 60°, а диагональ параллелепипеда образует с этой плоскостью угол θ = 51°. Определить усилия в стержнях. На рис. С3.10 в качестве примера показано, как должен выглядеть чертеж СЗ. 1, если по условиям задачи узлы находятся в точках L и М, а стержнями являются LM, LA, LB; МА, МС, MD. Там же показаны углы φ и θ.

Задача С4
Две однородные прямоугольные тонкие плиты жестко соединены (сварены) под прямым углом друг к другу и закреплены сферическим шарниром (или подпятником) в точке А, цилиндрическим шарниром (подшипником) в точке В и невесомым стержнем l (рис. С4.0 — С4.7) или же двумя подшипниками в точках A и В и двумя невесомыми стержнями 1 и 2 (рис. С4.8, С4.9); все стержни прикреплены к плитам и к неподвижным опорам шарнирами. Размеры плит указаны на рисунках; вес большей плиты P1 = 5 кН, вес меньшей плиты P2 = 3 кН. Каждая из плит расположена параллельно одной из координатных плоскостей (плоскость ху — горизонтальная). На плиты действуют пара сил с моментом М = 4 кН*м, лежащая в плоскости одной из плит, и две силы. Значения этих сил, их направления и точки приложения указаны в табл. С4; при этом силы F1 и F4 лежат в плоскостях, параллельных плоскости ху, сила F2 — в плоскости, параллельной xz, и сила F3 — в плоскости, параллельной yz. Точки приложения сил (D, Е, Н, К) находятся в углах или в серединах сторон плит. Определить реакции связей в точках А и В и реакцию стержня (стержней). При подсчетах принять а = 0,6 м.

Тестирование on-line Готовые работы
 

Выполняем тестирование он-лайн для студентов Тихоокеанского государственного университета по Теоретической механике (односеместровый курс).
Стоимость прохождения он-лайн тестов за весь курс уточняйте при заказе (присылаете логин и пароль от личного кабинета, мы сообщим Вам стоимость).



Экзамен (односеместровый курс)

Для заказа он-лайн тестирования по теоретической механике присылайте свой логин и пароль.

Вопрос 1. V - вектор скорости точки M, a - вектор ускорения точки M. Точка, изображенная на рисунке движется

  • прямолинейно равномерно
  • прямолинейно ускоренно
  • криволинейно ускоренно
  • криволинейно замедленно
  • криволинейно равномерно
  • прямолинейно замедленно
Вопрос 2. Груз имеет скорость V. Тогда угловая скорость ступенчатого колеса 2 равна
  • 3V/4r
  • 3V/r
  • V/3r
  • V/4r
  • 4V/3r
Вопрос 3. Ошибки допущены в названиях связей
  • C - жесткая заделка
  • A - шарнирно-подвижная опора
  • B - гибкая нить
  • Д - каток
Вопрос 4. На балку действует сила P=15H. Размеры AC=4 м, BC=2 м. Реакция опоры A (в ньютонах) равна
  • 30
  • 20
  • 5
  • 15
  • 60
Вопрос 5. Направление переносной скорости точки верно указано на рисунке:
...

Вопрос 6. Определить косинус угла между вектором силы F и осью координат OY, если сила F=3i+4j+5k
  • 0,5
  • 3/5√2
  • 4/5√2
  • √(3/2)
Вопрос 7. Диск радиуса R и массой m, которая равномерно распределена по ободу жестко соединен со стержнем длиной l=R, который вращается относительно оси, проходящей через точку O перпендикулярно плоскости диска, с угловой скоростью ω и угловым ускорением ε.
  • 3mω2R2/4
  • 5mω2R2/2
  • 3mω2R2/2
  • 5mω2R2/4
Вопрос 8. Дано: F1=10 кН, F2=20 кН. Определить усилие в стержне 4 фермы.
  • S4=5 кН
  • S4=10 кН
  • S4=10√2 кН
  • S4=20√2 кН
  • S4=30 кН
  • S4=20 кН
Вопрос 9. Нельзя считать материальной точкой
  • тело, движущееся поступательно по криволинейной траектории
  • тело, размерами которого можно пренебречь
  • вращающееся тело
  • тело, движущееся поступательно по прямолинейной траектории
Вопрос 10. Проекция силы F на ось X определяется по формуле
  • Fx=0
  • Fx=-Fsinβ
  • Fx=-F
  • Fx=-Fcosβ
Вопрос 11. Какая сила будет равнодействующей сил F1 и F2?
  • R1
  • R2
  • R3
  • никакая
Вопрос 12. К ломаному стержню, размеры которого показаны на рисунке (a, b, c) приложена сила F. Плечо силы F относительно точки O равно
  • a+b+c
  • a
  • a+c
  • b
  • c
Вопрос 13. Верно указано плечо h силы F относительно центра O на рисунке
...

Вопрос 14. Уравнение равновесия составленное без ошибок
  • ∑MД=-q∙2-1∙F∙cos600-3∙SAB-1∙SAC=0
  • ∑Xi=-SAC-Fsin600+SДЕ=0
  • ∑Yi=-F∙sin600-q∙2+SAB
  • ∑MA=-q∙4-3∙F∙sin600-3∙SДЕ=0
Вопрос 15. Твердое тело двигается поступательно под действием известной силы. Для определения количества движения тела необходимы
  • масса и перемещение центра масс
  • масса, скорость центра масс и сила, приложенная в центре масс
  • масса и сила, приложенная в центре масс
  • масса и скорость центра масс
Вопрос 16. К вершинам куба со стороной a приложены шесть сил F1=F2=F3=F4=F5=F6=F. Сумма моментов всех сил системы относительно OX равна
  • -2Fa
  • -Fa
  • Fa
  • 0
  • 2Fa
Вопрос 17. Диск радиусом R вращается вокруг неподвижной оси. Скорость точки A правильно показана на рисунке
...

Вопрос 18. Движение точки по известной траектории задано уравнением s=7-8t+2t2 (м). Скорость точки в момент времени t=1 с равна... (м/с)
  • -2
  • -4
  • 1
  • 5
Вопрос 19. Движение точки по известной траектории задано уравнением s=3+4t-t3 (м). В момент времени t=1 с нормальное ускорение равно an=5 (м/с2), радиус кривизны траектории равен (=...(м)
  • 0,2
  • 0,8
  • 1,8
  • 3,2
Вопрос 20. Колесо 2 движется
  • поступательно
  • плоскопараллельно
  • сферически
  • вращательно
Вопрос 21. Кориолисово ускорение равно нулю, если
  • переносное движение является поступательным
  • вектор относительной скорости пересекает ось переносного вращения
  • относительное движение является равномерным
  • относительное и переносное движения происходят в одной плоскости
Вопрос 22. Если c - жесткость пружины c=400 Н/м, l0 - длина ненапряженной пружины l0=50 см, l1 - начальная длина пружины l1=30 см, l2 - конечная длина пружины l2=40 см, то работа, совершаемая силой упругости пружины при изменении длины от значения l1 до значения l2, равна
  • -9 Дж
  • -72 Дж
  • 0 Дж
  • 6 Дж
  • 32 Дж
Вопрос 23. Движение точки по известной траектории задано уравнением s=t3+2t-7 (м). В момент времени t=1 с нормальное ускорение равно an=2 (м/с2), радиус кривизны траектории равен (=...(м)
  • 2,5
  • 2
  • 12,5
  • 4,5
Вопрос 24. Материальная точка M описывает плоскую кривую AB. В данный момент времени на точку действует сила F, V - скорость точки. Второму закону динамики протеворечит рисунок
...

Вопрос 25. К прямоугольнику со сторонами a и b приложены четыре силы. В каком равенстве допущена ошибка?
  • M0(F3)=-F3sin300∙b
  • M0(F2)=F2∙b
  • M0(F1)=F1∙b
  • M0(F4)=F4cos600∙a
Вопрос 26. Груз перемещается вверх по наклонной поверхности. Работа силы тяжести при перемещении на расстояние s вычисляется по формуле
  • A(mg)=0
  • A(mg)=-mg∙s∙sinα
  • A(mg)=mg∙s
  • A(mg)=-mg∙s∙cosα
Вопрос 27. Точка M движется ускоренно по окружности радиусом r. Тангенциальное ускорение a точки M верно показано на рисунке
...

Вопрос 28. Груз весом G=8 кН двигается по кольцу радиуса R=30 см, находящемуся в вертикальной плоскости. Если давление на кольцо в верхней точке траектории будет равным 0 (g=10 м/с2), то скорость груза в этой точке будет равна V=... (м/с)
  • 0,58
  • 17,3
  • 3
  • 1,7
  • 5,8
Вопрос 29. Тело равномерно вращается вокруг оси Z с угловой скоростью 12с-1. За время t=3 с тело поврнется на угол
  • 4 рад
  • 36 рад
  • 3600
  • 1200
Вопрос 30. Точка A одного из шкивов ременной передачи имеет скорость VA=8 см/с. Тогда скорость точки B другого шкива равна
  • VB=8 см/с
  • VB=16 см/с
  • VB=2 см/с
  • VB=4 см/с


 Скрыть

Виды работ

Задачи
Тестирование on-line

Мы используем cookie. Продолжая пользоваться сайтом,
вы соглашаетесь на их использование.   Подробнее