Санкт-Петербургский Государственный Университет Телекоммуникаций им проф. М.А.Бонч-Бруевича
Методичка 2996_2003
Министерство Российской Федерации
по связи и информатизации
Санкт-Петербургский государственный университет телекоммуникаций им. проф. Бонч-Бруевича
Факультет вечернего и заочного обучения
Е.Л.Рабкин, Ю.Б. Фарфоровская Дискретная математика
Булевы функции и элементы теории графов
Методические указания и контрольные задания
Санкт-Петербург
2003
Стоимость выполнения контрольной работы по дискретной математике уточняйте при заказе.
Контрольное задание
Как правило, требуется решить задачи 1-10(пункт а), 11-20(пункт б), 21-30(без полинома Жигалкина), 31-40(пункт а), 41-50, 51-60(без нахождения сечений), 61-70
В заданиях 1–10 требуется привести данные выражения к ДНФ, пользуясь правилами де Моргана. Если возможно, сократить ДНФ, используя свойство поглощения и правило Блейка
В заданиях 11–20 требуется: в задаче а) написать по данной ДНФ полином Жегалкина, от ДНФ перейти к КНФ, а затем перейти к СКНФ; в задаче б) перейти от данной КНФ к ДНФ, а затем перейти к СДНФ.
В заданиях 21–30 требуется: составить таблицу истинности данной функции; написать для неё СДНФ и СКНФ (если возможно); найти по таблице истинности полином Жегалкина для данной функции; составить карту Карно для данной функции и найти сокращенную ДНФ.
В заданиях 31–40 с помощью карт Карно по данной таблице истинности для функции 4 переменных найти её сокращённую ДНФ.
В заданиях 41–50 составить таблицу Поста и найти базисы из следующих функций.
В задачах 51–60 требуется составить структурную матрицу для данного орграфа (или графа) и, методами булевой алгебры, найти все пути Pij из вершины i в вершину j, затем найти все сечения Sij между этими вершинами. В данном задании (чтобы исключить возможные неясности графического рисунка) указываются все ориентированные ребра, причем запись (2–4) означает, что 2 вершина связана с 4-й, а обратной связи нет.
В заданиях 61–70 требуется найти в данной сети (т.е. в графе с заданными пропускными способностями ребер) максимальный поток из вершины с номером 1 в вершину с наибольшим номером (в заданиях либо вершину 5, либо 6). В заданиях заданы 2 графа (граф, который находится слева, – это сеть с заданными пропускными способностями ребер, и граф справа с заданным потоком, который необходимо либо улучшить, либо доказать, что он не улучшаем и, значит, является максимальным).