whatsappWhatsApp: +79119522521
telegramTelegram: +79119522521
Логин Пароль
и
для авторов
Выполненные работы

Дискретная математика



Санкт-Петербургский Государственный Университет Телекоммуникаций им проф. М.А.Бонч-Бруевича


Методичка 2996_2003
Методичка 2996_2003. Титульный лист

Министерство Российской Федерации
по связи и информатизации
Санкт-Петербургский государственный университет телекоммуникаций им. проф. Бонч-Бруевича
Факультет вечернего и заочного обучения
Е.Л.Рабкин, Ю.Б. Фарфоровская
Дискретная математика
Булевы функции и элементы теории графов
Методические указания и контрольные задания
Санкт-Петербург
2003

Стоимость выполнения контрольной работы по дискретной математике уточняйте при заказе.

Контрольное задание
Как правило, требуется решить задачи 1-10(пункт а), 11-20(пункт б), 21-30(без полинома Жигалкина), 31-40(пункт а), 41-50, 51-60(без нахождения сечений), 61-70

В заданиях 1–10 требуется привести данные выражения к ДНФ, пользуясь правилами де Моргана. Если возможно, сократить ДНФ, используя свойство поглощения и правило Блейка
В заданиях 11–20 требуется: в задаче а) написать по данной ДНФ полином Жегалкина, от ДНФ перейти к КНФ, а затем перейти к СКНФ; в задаче б) перейти от данной КНФ к ДНФ, а затем перейти к СДНФ.
В заданиях 21–30 требуется: составить таблицу истинности данной функции; написать для неё СДНФ и СКНФ (если возможно); найти по таблице истинности полином Жегалкина для данной функции; составить карту Карно для данной функции и найти сокращенную ДНФ.
В заданиях 31–40 с помощью карт Карно по данной таблице истинности для функции 4 переменных найти её сокращённую ДНФ.
В заданиях 41–50 составить таблицу Поста и найти базисы из следующих функций.
В задачах 51–60 требуется составить структурную матрицу для данного орграфа (или графа) и, методами булевой алгебры, найти все пути Pij из вершины i в вершину j, затем найти все сечения Sij между этими вершинами. В данном задании (чтобы исключить возможные неясности графического рисунка) указываются все ориентированные ребра, причем запись (2–4) означает, что 2 вершина связана с 4-й, а обратной связи нет.
В заданиях 61–70 требуется найти в данной сети (т.е. в графе с заданными пропускными способностями ребер) максимальный поток из вершины с номером 1 в вершину с наибольшим номером (в заданиях либо вершину 5, либо 6). В заданиях заданы 2 графа (граф, который находится слева, – это сеть с заданными пропускными способностями ребер, и граф справа с заданным потоком, который необходимо либо улучшить, либо доказать, что он не улучшаем и, значит, является максимальным).

Вариант 0, Вариант 1, Вариант 2, Вариант 3, Вариант 4, Вариант 5, Вариант 6, Вариант 8, Вариант 9

показать все

Мы используем cookie. Продолжая пользоваться сайтом,
вы соглашаетесь на их использование.   Подробнее