Санкт-Петербургский национальный исслед. университет информационных технологий, механики и оптики
Методичка Z783_2011
Министерство образования и науки Российской Федерации
федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования
Санкт-Петербургский государственный университет низкотемпературных и пищевых технологий
Кафедра теоретических основ тепло- и хладотехники ТЕРМОДИНАМИКА
ТЕПЛО- И МАССООБМЕН
ТЕПЛОПЕРЕДАЧА
Рабочая программа и контрольные работы
для студентов специальностей
140401, 140504, 190603
заочной, в том числе сокращенной,
формы обучения
Санкт-Петербург
2011
В методических указаниях содержатся контрольные работы по Термодинамике и Теплопередаче и тепло- и массообмену.
Стоимость выполнения контрольных работ уточняйте при заказе
К.р. по Термодинамике
Контрольная работа № 1
Задача 1.
Газ сжимается в компрессоре по политропе с показателем n. В начальном состоянии давление газа p1 и температура t1, в конечном состоянии давление p2. Масса газа М = 10 кг.
Определить параметры газа в начальном и конечном состояниях, работу и теплоту процесса, изменение внутренней энергии и энтропии. Найти работу компрессора в адиабатном, политропном и изотермическом процессах.
Принять показатель адиабаты k = 1,4; среднюю массовую изохорную теплоемкость Cv = 0,723 кДж/(кг К). Для определения удельной газовой постоянной использовать уравнение Майера.
Изобразить политропный процесс в p–v и T–s-координатах (без масштаба). На этих же рисунках показать также изобарный, изотермический, адиабатный и изохорный процессы, имеющие начальное состояние в точке 1.
Задача 2.
Температура воздуха, поступающего в компрессор воздушной холодильной машины (ВХМ), t1; давление p1. Давление воздуха, поступающего в детандер, p2; температура t3. Массовый расход воздуха М = 0,1 кг/с.
Определить: параметры узловых точек цикла, теплоту и работу каждого процесса, а также цикла в целом, холодильный коэффициент и холодопроизводительность ВХМ. Сравнить цикл ВХМ с обратным обратимым циклом Карно, осуществляемым в том же интервале температур источников t1 и t3, определив его холодильный коэффициент.
Изобразить схему установки и цикл ВХМ в диаграммах p–v, T–s. Вместе с циклом ВХМ изобразить цикл Карно.
Для расчета показателя адиабаты k использовать уравнение Майера. Средняя массовая изохорная теплоемкость воздуха Cv = 0,723 кДж/(кг К), удельная газовая постоянная R = 287 Дж/(кг К).
Задача 3.
Рабочее вещество – реальный газ. В начальном состоянии заданы параметры: давление p1 и удельный объем v1. В результате термодинамического процесса давление в конечном состоянии стало p2.
Определить термодинамическое состояние рабочего вещества в начале и конце процесса, а также его параметры: 1) с помощью таблиц (или расчетом); 2) независимо – с помощью диаграмм для данного вещества.
Изобразить процесс в диаграммах p–v, T–s, ln p–h . Рассчитать и показать, где возможно, на диаграммах удельную теплоту, работу и изменение внутренней энергии в процессе.
Контрольная работа № 2
Задача 1.
Паросиловая установка (ПСУ) работает по циклу Ренкина. В турбину поступает водяной пар с температурой t1 и давлением p1. На выходе из турбины давление p2, расход пара М = 10 кг/с.
Определить параметры (p, t, v, h, s, x) узловых точек цикла, подведенную и отведенную теплоту, работу цикла, термический коэффициент полезного действия и мощность установки.
Изобразить схему установки и цикл в диаграммах p–v, T–s и h–s; показать графически теплоту и работу цикла. Параметры узловых точек определить двумя способами: 1) с помощью диаграммы; 2) по таблицам термодинамических свойств холодильного агента (или путем расчета, когда это необходимо).
Задача 2.
Паровая компрессионная холодильная машина работает по циклу с дросселированием, перегревом перед компрессором и переохлаждением после конденсатора. Температура кипения хлад-агента в испарителе t0. В компрессор поступает холодильный агент в состоянии перегретого пара с температурой t1. Температура конденсации хладагента в конденсаторе tк. Хладагент перед дросселированием (регулирующим вентилем) охлаждается до температуры t5.
Определить параметры: давление, температуру, удельный объем, удельную энтальпию, удельную энтропию, степень сухости (p, t, v, h, s, x) узловых точек цикла, подведенную и отведенную теплоту, работу, теоретическую мощность привода компрессора, полную холодопроизводительность и холодильный коэффициент, если массовый расход циркулирующего хладагента М = 0,2 кг/с.
Изобразить схему установки, представить цикл в координатах p–v, T–s и ln p–h. Параметры узловых точек определить двумя способами: 1) с помощью диаграммы; 2) по таблицам термодинамических свойств холодильного агента (или путем расчета, когда это необходимо). Параметры ненасыщенной переохлажденной жидкости после конденсатора (кроме давления) определить условно по таблицам для насыщенной жидкости по температуре переохлаждения t5.
Задача 3.
Влажный воздух состояния 1 и массой сухого воздуха М охлаждается сначала до температуры точки росы (состояние 2), затем до температуры t3 (состояние 3). Далее (после отвода конденсата) насыщенный влажный воздух состояния 3 нагревается до первоначальной температуры t1 (состояние 4).
Определить параметры влажного воздуха: парциальное давление водяного пара, давление насыщения при заданной температуре, относительную влажность, влагосодержание, удельную энтальпию, степень насыщения (pп , pн , ф, d, h...) всех названных состояний, а также теплоту, подведенную к воздуху при нагревании и отведенную при охлаждении.
Параметры воздуха определить двумя способами: 1) с помощью диаграммы h–d; 2) расчетом по формулам для влажного воздуха с использованием таблиц термодинамических свойств водяного пара и насыщенного влажного воздуха. Решение сопроводить пояснениями. Процессы нагревания и охлаждения изобразить в диаграмме h–d (без масштаба). Давление атмосферного воздуха принять равным давлению, для которого построена диаграмма h–d.