Министерство высшего и среднего специального образования СССР Теория вероятностей и математическая статистика Программа, методические указания и контрольные задания для студентов-заочников инженерно-экономических и экономических специальностей высших учебных заведений Издание седьмое МОСКВА 1977
Готовы следующие варианты:
Вариант 00
Задание 20 Вероятность наступления события в каждом из независимых испытаний равна 0,8. Произведено 400 испытаний. Найти вероятность того, что относительная частота появления события отклонится от его вероятности не больше чем на 0,09. Задание 30 Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задание 50 Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . a=7, σ =2, a=6, β=10, δ=4. Задание 60 Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95. σ=2, x=20.01, n=36. Задание 70 Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X).
Вариант 01
Контрольная работа 1 Задание 1 В каждой из двух урн содержится 6 чёрных и 4 белых шара. Из первой урны наудачу извлечён один шар и переложен во вторую. Найти вероятность того, что шар, извлечённый из второй урны, окажется чёрным. Задание 11 Среднее число вызовов, поступающих на АТС в 1 мин., равно четырём. Найти вероятность того, что за 2 мин. поступит: 1) 6 вызовов; 2)менее шести вызовов; 3) не менее шести вызовов. Предполагается, что поток вызовов простейший. Задание 21 Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задание 31 Случайная величина X задана интегральной функцией (функцией распределения) F(x). Требуется: 1) найти дифференциальную функцию (плотность вероятности); 2) найти математическое ожидание и дисперсию X; 3) построить графики интегральной и дифференциальной функций. Задание 41 Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . Контрольная работа 2 Задание 51 Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95. Задание 61 Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X). Задание 71 Найти выборочное уравнение прямой ... регрессии Y на X по данной корреляционной таблице.
Вариант 02
Контрольная работа 1 Задача 2. В каждой из двух урн содержится 8 черных и 2 белых шара. Из второй урны наудачу извлечен один шар и переложен в первую. Найти вероятность того, что шар, извлеченный из первой урны, окажется черным. Задача 12. Среднее число вызовов, поступающих на АТС в 1 мин, равно двум. Найти вероятность того, что за 4 мин поступит: 1) 5 вызовов; 2) менее пяти вызовов; 3) более пяти вызовов. Предполагается, что поток вызовов – простейший. Задача 22. Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задача 32. Случайная величина X задана интегральной функцией (функцией распределения) F(x). Требуется: 1) найти дифференциальную функцию (плотность вероятности); 2) найти математическое ожидание и дисперсию X; 3) построить графики интегральной и дифференциальной функций. Задача 42. Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . Контрольная работа 2 Задача 52. Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95. Задача 62. Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X). Задача 72. Найти выборочное уравнение прямой ... регрессии Y на X по данной корреляционной таблице.
Вариант 03
Задание 3 Три стрелка произвели залп по цели. Вероятность поражения цели первым стрелком равна 0,7; для второго и третьего стрелков эти вероятности соответственно равны 0,8 и 0,9. Найти вероятность того, что: 1) только один из стрелков поразит цель; 2) только два стрелка поразят цель; 3) все три стрелка поразят цель. Задание 13 Среднее число кораблей, заходящих в порт за 1 ч. равно трём. Найти вероятность того, что за 4 ч. в порт зайдёт: 1) 6 кораблей; 2) менее шести кораблей; 3) не менее шести кораблей. Предполагается, что поток кораблей простейший. Задание 23 Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задание 33 Случайная величина X задана интегральной функцией (функцией распределения) F(x) . Требуется: 1) найти дифференциальную функцию (плотность вероятности); 2) найти математическое ожидание и дисперсию X ; 3) построить графики интегральной и дифференциальной функций. Задание 43 Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . a=13, σ =4, a=11, β=21, δ=8. Задание 53 Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95. σ=8, x=18.41, n=36. Задание 63 Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X). Задание 73 Найти выборочное уравнение прямой ... регрессии Y на X по данной корреляционной таблице.
Вариант 04
Задание 4 Из трёх орудий произвели залп по цели. Вероятность попадания в цель при одном выстреле из первого орудия равна 0,8; для второго и третьего орудий эти вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что: 1) только один снаряд попадёт цель; 2) только два снаряда попадут в цель; 3) все три снаряда попадут в цель. Задание 24 Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задание 44 Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . a=12, σ =5, a=12, β=22, δ=10. Задание 54 Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95. σ=7, x=18,51, n=100. Задание 64 Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X). Задание 74 Найти выборочное уравнение прямой ... регрессии Y на X по данной корреляционной таблице.
Вариант 05
Контрольная работа 1 Задание 5 Студент знает 40 из 50 вопросов программы. Найти вероятность того, что студент знает 2 вопроса, содержащиеся в его экзаменационном билете. Задание 15 Среднее число самолётов, прибывающих в аэропорт за 1 мин., равно трём. Найти вероятность того, что за 2 мин прибудут: 1) 4 самолёта; 2) менее четырёх самолётов; 3) не менее четырёх самолётов. Задание 25 Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задание 35 Случайная величина X задана интегральной функцией (функцией распределения) F(x). Требуется: 1) найти дифференциальную функцию (плотность вероятности); 2) найти математическое ожидание и дисперсию X; 3) построить графики интегральной и дифференциальной функций. Задание 45 Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . a=11, σ =4, a=13, β =23, δ =6 Контрольная работа 2 Задание 55 Заданы среднее квадратичное отклонение σ нормально распределённой случайной величины X , выборочная средняя х , объём выборки n . Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надёжностью y=0.95 . σ =6 , x=18.61 , n=81 . Задание 65 Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X). Задание 75 Найти выборочное уравнение прямой ... регрессии Y на X по данной корреляционной таблице.
Вариант 06
Задание 6 Две команды по 20 спортсменов производят жеребьёвку для присвоения номеров участникам соревнований. Два брата входят в состав различных команд. Найти вероятность того, что братья будут участвовать в соревнованиях под одним и тем же номером 18. Задание 16 Вероятность появления события в каждом из независимых испытаний равна 0,8. Найти вероятность того, что событие наступит 60 раз в 100 испытаниях. Задание 26 Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задание 46 Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . a=10, σ =8, a=14, β=18, δ=2. Задание 56 Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95. σ=5, x=18.71, n=25. Задание 66 Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X). Задание 76 Найти выборочное уравнение прямой ... регрессии Y на X по данной корреляционной таблице.
Вариант 07
Задание 17 Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что в 100 испытаниях событие появится не менее 20 и не более 30 раз. Задание 27 Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задание 47 Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . a=9, σ =3, a=9, β=18, δ=6. Задание 57 Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95. σ=4, x=18.81, n=16. Задание 67 Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X).
Вариант 08
Задание 18 Вероятность наступления события в каждом из независимых испытаний равна 0,2. Найти вероятность того, что событие наступит 12 раз в 100 испытаниях. Задание 28 Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задание 48 Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . a=8, σ =4, a=8, β=12, δ=8. Задание 58 Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95. σ=3, x=19.91, n=49. Задание 68 Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X).
Вариант 09
Задание 9 От автовокзала отправились 2 автобуса – экспресса к трапам самолётов. Вероятность своевременного прибытия каждого автобуса в аэропорт равна 0,95. Найти вероятность того, что: 1) оба автобуса прибудут вовремя; 2) оба автобуса опоздают; 3) только один автобус прибудет вовремя; 4) хотя бы один автобус прибудет вовремя. Задание 29 Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi Задание 49 Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ . a=7, σ =2, a=6, β=10, δ=4. Задание 59 Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95. σ=2, x=20.01, n=36. Задание 69 Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X). Задание 79 Найти выборочное уравнение прямой ... регрессии Y на X по данной корреляционной таблице.