whatsappWhatsApp: +79119522521
telegramTelegram: +79119522521
Логин Пароль
и
для авторов
Выполненные ранее работы и работы на заказ

Санкт-Петербургский Государственный Институт Кино и Телевидения

Теоретическая механика

Методичка 1989 (Тарг)
Методичка 1989 (Тарг). Титульный лист

Министерство высшего и среднего специального образования СССР
Учебно-методическое управление по высшему образованию
Теоретическое механика
Методические указания и контрольные задания
для студентов-заочников строительных,
транспортных, машиностроительных
и приборостроительных специальностей
высших учебных заведений
Высшая школа

Стоимость решения задач по Таргу ... руб. за задачу в электронном виде, оформление в Word.
Вариант задания выбирается по двум последним цифрам студенческого шифра. Предпоследняя цифра - номер рисунка, последняя - номер варианта.
Предоставляем подробные решения задач по следующим разделам:

Динамика

Задача Д1
Груз D массой m, получив в точке A начальную скорость v0 движется в изогнутой трубе AВС, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 — Д1.9, табл. Д1). На участке AВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения) ; трением груза о трубу на участке AВ пренебречь. В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действуют сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние AВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т. е. х = f(t), где х = BD.

Задача Д2
Груз 1 массой m укреплен на пружинной подвеске в лифте (рис. Д2.0 — Д2.9, табл. Д2). Лифт движется вертикально по закону z = 0,5α1t2 + α2sin(ωt) + α3cos(ωt) (ось z направлена по вертикали вверх; z выражено в метрах, t — в секундах). На груз действует сила сопротивления среды R = μv, где v — скорость груза по отношению к лифту. Найти закон движения груза по отношению к лифту, т. е. х = f(t); начало координат поместить в точке, где находится прикрепленный к грузу конец пружины, когда пружина не деформирована. При этом во избежание ошибок в знаках направить ось х в сторону удлинения пружины, а груз изобразить в положении, при котором х>0, т.е. пружина растянута. При подсчетах можно принять g = 10 м/с2. Массой пружин и соединительной планки 2 пренебречь. В таблице обозначено: c1, с2, c3 — коэффициенты жесткости пружин, λ0 — удлинение пружины с эквивалентной жесткостью в начальный момент времени t = 0, v0 — начальная скорость груза по отношению к лифту (направлена вертикально вверх). Прочерк в столбцах c1, с2, c3 означает, что соответствующая пружина отсутствует и на чертеже изображаться не должна. Если при этом конец одной из оставшихся пружин окажется свободным, его следует прикрепить в соответствующем месте или к грузу или к потолку (полу) лифта; то же следует сделать, если свободными окажутся соединенные планкой 2 концы обеих оставшихся пружин. Условие μ = 0 означает, что сила сопротивления R отсутствует.

Задача Д3
Механическая система состоит из грузов D1 массой m1 = 2 кг и D2 массой m2 = 6 кг и из прямоугольной вертикальной плиты массой m3 = 12 кг, движущейся вдоль горизонтальных направляющих (рис. Д3.0 — Д3.9, табл. Д3). В момент времени t0 = 0, когда система находилась в покое, под действием внутренних сил грузы начинают двигаться по желобам, представляющим собой окружности радиусов r = 0,4 м и R = 0,8 м. При движении грузов угол φ1 = ∠A2C3D1 изменяется по закону φ1 = f1(t), а угол φ2 = ∠A2C3D2 — по закону φ2 = f2(t). В табл. ДЗ эти зависимости даны отдельно для рис. 0—4 и 5—9, где φ выражено в радианах, t — в секундах. Считая грузы материальными точками и пренебрегая всеми сопротивлениями, определить закон изменения со временем величины, указанной в таблице в столбце «Найти», т. е. x3 = t3(t) и N = f(t), где x3 — координата центра C3 плиты (зависимость x3 = f3(t) определяет закон движения плиты), N — полная нормальная реакция направляющих.

Задача Д4
Механическая система состоит из прямоугольной вертикальной плиты 1 массой m1 = 18 кг, движущейся вдоль горизонтальных направляющих, и груза D массой m2 = 6 кг (рис. Д4.0 — Д4.9, табл. Д4). В момент времени t0 = 0, когда скорость плиты u0 = 2 м/с, груз под действием внутренних сил начинает двигаться по желобу плиты. На рис. 0—3 желоб КЕ прямолинейный и при движении груза расстояние s = AD изменяется по закону s = f1(t), а на рис. 4—9 желоб — окружность радиуса R = 0,8 м и при движении груза угол φ = ∟AC1D изменяется по закону ф = f2(t). В табл. Д4 эти зависимости даны отдельно для рис. 0 и 1, для рис. 2 и 3 и т. д., где s выражено в метрах, φ — в радианах» t — в секундах. Считая груз материальной точкой и пренебрегая всеми сопротивлениями, определить зависимость u = f(t), т. е. скорость плиты как функцию времени.

Задача Д5
Однородная горизонтальная платформа (круглая радиуса R или прямоугольная со сторонами R и 2R, где R = 1,2 м) массой m1 = 24 кг вращается с угловой скоростью ω0 = 10 с-1 вокруг вертикальной оси z, отстоящей от центра масс C платформы на расстоянии OC = b (рис. Д5.0 —Д5.9, табл. Д5); размеры для всех прямоугольных платформ показаны на рис. Д5.0а (вид сверху). В момент времени t0 = 0 по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой m2 = 8 кг по закону s = AD = F(t) где s выражено в метрах, t — в секундах. Одновременно на платформы начинает действовать пара сил с моментом М (задан в ньютонометрах; при М<0 его направление противоположно показанному на рисунках). Определить, пренебрегая массой вала, зависимость ω = f(t), т. е. угловую скорость платформы, как функцию времени. На всех рисунках груз D показан в положении, при котором s>0 (когда s<0, груз находится по другую сторону от точки А). Изображая чертеж решаемой задачи, провести ось z на заданном расстоянии OC = b от центра С.

Задача Д6
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0,3 м, r3 = 0,1 м и радиусом инерции относительно оси вращения ρ3 = 0,2 м, блока 4 радиуса R4 = 0,2 м и катка (или подвижного блока) 5 (рис. Д6.0 — Д6.9, табл. Д6); тело 5 считать сплошным однородным цилиндром, а массу блока 4 — равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости c. Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках). Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0,2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: v1, v2, vC5 — скорости грузов 1, 2 и центра масс тела 5 соответственно, ω3 и ω4 — угловые скорости тел 3 и 4. Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 2), катятся по плоскостям без скольжения. На всех рисунках не изображать груз 2, если m2 = 0; остальные тела должны изображаться и тогда, когда их масса равна нулю.

Задача Д7
Барабан радиуса R весом P имеет выточку (как у катушки) радиуса r = 0,6R (рис. Д7.0 — Д7.9, табл. Д7). К концам намотанных на барабан нитей приложены постоянные силы F1 и F2, направления которых определяются углом β; кроме сил на барабан действует пара с моментом М; когда в таблице М<0, направление момента противоположно показанному на рисунке. При движении, начинающемся из состояния покоя, барабан катится без скольжения по шероховатой наклонной плоскости с углом наклона α так, как показано на рисунках. Пренебрегая сопротивлением качению, определить закон движения центра масс С барабана, т. е. xC = f(t), и наименьшее значение коэффициента трения f о плоскость, при котором возможно качение без скольжения. Барабан рассматривать как сплошной однородный цилиндр радиуса R.

Задача Д8
Вертикальный вал АК (рис. Д8.0 — Д8.9), вращающийся с постоянной угловой скоростью ω = 10 с-1, закреплен подпятником в точке A и цилиндрическим подшипником в точке, указанной в табл. Д8 в столбце 2 (АВ = BD = DE = ЕК = a). К валу жестко прикреплены тонкий однородный ломаный стержень массой m = 10 кг, состоящий из частей 1 и 2 (размеры частей стержня показаны на рисунках, где b = 0,1 м, а их массы m1 и m2 пропорциональны длинам), и невесомый стержень длиной l = 4b с точечной массой m3 = 3 кг на конце; оба стержня лежат в одной плоскости. Точки крепления стержней указаны в таблице в столбцах 3 и 4, а углы α, β, γ, φ даны в столбцах 5—8. Пренебрегая весом вала, определить реакции подпятника и подшипника. При подсчетах принять а = 0,6 м.

Задача Д9
Механизм, расположенный в горизонтальной плоскости, находится под действием приложенных сил в равновесии; положение равновесия определяется углами α, β, γ, φ, θ (рис. Д9.0 — Д9.9, табл. Д9а и Д9б). Длины стержней механизма (кривошипов) равны: l1 = 0,4 м, l4 = 0,6 м (размеры l2 и l3 произвольны); точка Е находится в середине соответствующего стержня. На ползун В механизма действует сила упругости пружины F; численно F = сλ, где с — коэффициент жесткости пружины, λ — ее деформация. Кроме того, на рис. 0 и 1 на ползун D действует сила Q, а на кривошип O1А — пара сил с моментом М; на рис. 2—9 на кривошипы O1А и O2D действуют пары сил с моментами М1 и M2. Определить, чему равна при равновесии деформация λ пружины, и указать, растянута пружина или сжата. Значения всех заданных величин приведены в табл. Д9а для рис. 0—4 и в табл. Д9б для рис. 5—9, где Q выражено в ньютонах, а М, М1, М2 — в ньютонометрах. Построение чертежа начинать со стержня, направление которого определяется углом α; для большей наглядности ползун с направляющими и пружину изобразить так, как в примере Д9 (см. рис. Д9, а также рис. Д9.10, б). Если на чертеже решаемого варианта задачи прикрепленный к ползуну В стержень окажется совмещенным с пружиной (как на рис. Д9.10, а), то пружину следует считать прикрепленной к ползуну с другой стороны (как на рис. Д9.10, б, где одновременно иначе изображены направляющие).

Задача Д10
Механическая система состоит из однородных ступенчатых шкивов 1 и 2, обмотанных нитями, грузов 3—6, прикрепленных к этим нитям, и невесомого блока (рис. Д10.0 — Д10.9, табл. Д10). Система движется в вертикальной плоскости под действием сил тяжести и пары сил с моментом М, приложенной к одному из шкивов. Радиусы ступеней шкива 1 равны: R1 = 0,2 м, r1 — 0,1 м, а шкива 2 — R2 = 0,3 м, r2 = 0,15 м; их радиусы инерции относительно осей вращения равны соответственно ρ1 = 0,1 м и ρ2 = 0,2 м. Пренебрегая трением, определить ускорение груза, имеющего больший вес; веса Р1, …, Р6 шкивов и грузов заданы в таблице в ньютонах. Грузы, веса которых равны нулю, на чертеже не изображать (шкивы 1, 2 изображать всегда как части системы).

Задача Д11
Механическая система состоит из тел 1, 2, …, 5 весом P1, Р2, …, P5 соответственно, связанных друг с другом нитями, намотанными на ступенчатые блоки 1 и 2 (рис. Д11.0 — Д11.9, табл. Д11). Радиусы ступенчатых блоков 1 и 2 равны соответственно R1 = R, r1 = 0,4R, R2 = R, r2 = 0,8R. При вычислении моментов инерции все блоки, катки и колеса считать однородными сплошными цилиндрами радиуса R. На систему кроме сил тяжести действует сила F, приложенная к телу 3 или 4 (если тело 3 в систему не входит, сила приложена в точке В к тележке), и пары сил с моментами М1, M2, приложенные к блокам 1 и 2; когда М<0, направление момента противоположно показанному на рисунке. На участке нити, указанном в таблице в столбце «Пружина», включена пружина с коэффициентом жесткости с (например, если в столбце стоит АВ, то участок АВ является пружиной, если AD, то AD — пружина и т.д.); в начальный момент времени пружина не деформирована. Составить для системы уравнения Лагранжа и найти закон изменения обобщенной координаты x, т. е. x = f(t), считая, что движение начинается из состояния покоя; определить также частоту и период колебаний, совершаемых телами системы при ее движении (о выборе координаты x см. «Указания»). Прочерк в столбцах таблицы, где заданы веса, означает, что соответствующее тело в систему не входит (на чертеже не изображать), а ноль — что тело считается невесомым, но в систему входит; для колес, обозначенных номером 4, Р4 — их общий вес (вес платформы такой тележки не учитывается).

Задача Д12
Механизм, расположенный в вертикальной плоскости (рис. Д12.0 — Д12.9), состоит из ступенчатых колес 1 и 2 с радиусами R1 = 0,4 м, r1 = 0,2 м, R2 = 0,5 м, r2 = 0,3 м, имеющих неподвижные оси вращения; однородного стержня 3 длиной l =1,2 м, закрепленного шарниром на одном из концов; грузов 4 и 5, подвешенных к нитям, намотанным на колеса. На стержне расстояние АВ = 2l/3. Стержень 3 соединен с колесом 2 невесомым стержнем 6. Колеса 1 и 2 или находятся в зацеплении (рис. 0—4), или соединены невесомым стержнем 7 (рис. 5—9). К колесам и стержню 3 прикреплены пружины. В табл. Д12 заданы массы mi тел (кг) и коэффициенты жесткости ci пружин (Н/м). Прочерки в столбцах таблицы означают, что соответствующие тела или пружины в систему не входят (на чертеже эти тела и пружины не изображать); в результате в каждом конкретном варианте получается довольно простой механизм, содержащий три или даже два тела. Стержень 6 или 7 входит в состав механизма, когда в него входят оба тела, соединенные этим стержнем. В положениях, изображенных на рисунках, механизм находится в равновесии. Определить частоту и период малых колебаний системы около положения равновесия. Найти также, чему равно статическое удлинение (сжатие) пружины λст в положении равновесия. При подсчетах считать колеса 1 и 2 сплошными однородными цилиндрами радиусов R1 и R2 соответственно. Рассмотрим два примера решения этой задачи.

Динамика, Кинематика, Статика

показать все



Другие предметы, которые могут Вас заинтересовать:

Механика

Мы используем cookie. Продолжая пользоваться сайтом,
вы соглашаетесь на их использование.   Подробнее