Министерство высшего и среднего специального образования СССР Теория вероятностей и математическая статистика
Программа, методические указания и контрольные задания
для студентов-заочников инженерно-экономических
и экономических специальностей высших учебных заведений
Издание седьмое
МОСКВА
1977
Стоимость готового варианта в распечатанном виде 800 рублей
Стоимость одной готовой задачи в распечатке 100 руб.
Готовы следующие варианты:
Вариант 00
Задание 20
Вероятность наступления события в каждом из независимых испытаний равна 0,8. Произведено 400 испытаний. Найти вероятность того, что относительная частота появления события отклонится от его вероятности не больше чем на 0,09.
Задание 30
Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение дискретной случайной величины X по данному закону ее распределения (в первой строке указаны возможные значения xi, во второй строке – вероятности возможных значений Pi
Задание 50
Заданы математическое ожидание a и среднее квадратическое отклонение σ нормально распределенной случайной величины X. Найти: 1) вероятность того, что X примет значение, принадлежащее интервалу ( a, β ); 2) вероятность того, что абсолютная величина отклонения X – a окажется меньше δ .
a=7, σ =2, a=6, β=10, δ=4.
Задание 60
Заданы среднее квадратическое отклонение σ нормально распределенной случайной величины X, выборочная средняя x , объем выборки n. Найти доверительные интервалы для оценки неизвестного математического ожидания a с заданной надежностью y=0.95.
σ=2, x=20.01, n=36.
Задание 70
Найти методом произведений: 1) выборочную дисперсию. 2) выборочное среднее квадратическое отклонение по данному статистическому распределению выборки (в первой строке указаны выборочные варианты xi, а во второй строке – соответствующие частоты ni количественного признака X).