Санкт-Петербургский государственный аграрный университет
Методичка 2003
Министерство сельского хозяйства Российской Федерации
Санкт-Петербургский государственный аграрный университет
Кафедра высшей математики
Методические указания и контрольные задания
по курсу ВЫСШЕЙ МАТЕМАТИКИ
для студентов - заочников II курса
инженерных факультетов
Составили:
Г.Н. Бражниченко
Т.Т. Исаева
Н.Н. Солдаткина
И.Н. Шоренко
Санкт-Петербург
2003
Стоимость выполнения контрольных работ по высшей математике уточняйте при заказе.
Стоимость одной готовой задачи уточняйте при заказе.
Готовы следующие варианты:
Вариант 0
Контрольная работа 4 210. Построив на плоскости ХОУ область интегрирования, вычислить ... по области (Д), ограниченной заданными линиями.
0. f(x, y)=x2; y=x2; y=8-x2. 220. Даны криволинейный интеграл и три точки плоскости ХОУ: О(0,0), А(2,0), В(2,4).
Вычислить данный интеграл от точки О до точки В по трём различным контурам:
1) по ломаной ОАВ;
2) по отрезку прямой ОВ;
3) по дуге параболы y=х2.
Полученные результаты сравнить и объяснить их совпадение или несовпадение. 230. 1)Комплексное число изобразить вектором на комплексной плоскости и записать в тригонометрической и показательной формах;
2) решить уравнение.
0. z=-3√3-3i z3+16z=0 240. Дано дифференциальное уравнение первого порядка. Найти общее решение (общий интеграл) и частное решение, удовлетворяющее заданному начальному условию. 250. Даны дифференциальные уравнения второго порядка, допускающие понижение порядка. Найти частное решение, удовлетворяющее указанным начальным условиям. 260. Даны линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Найти общее решение. 270. Даны линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Применяя операционный метод, найти частное решение этих уравнений, удовлетворяющее указанным начальным условиям. 280. Даны системы линейных дифференциальных уравнений с постоянными коэффициентами. Применяя операционный метод, найти частные решения систем, удовлетворяющие указанным начальным условиям.
Контрольная работа 5 290. Исследовать на сходимость следующие ряды, используя при этом признаки сравнения, Даламбера и интегральный признак. 300. Исследовать ряд на абсолютную и условную сходимость. 310. Найти радиус, интервал и область сходимости степенного ряда. 320. Вычислить определённый интеграл с точностью до 0,001. 330. Дано дифференциальное уравнение первого порядка и соответствующее ему начальное условие. Найти решение этого уравнения, представив его в виде степенного ряда, содержащего три первых, отличных от нуля, члена разложения. 340. Разложить данную функцию f(x) в ряд Фурье в интервале (a, b).
Контрольная работа 6 350. В хозяйстве из 15 машин 6 имеют грузоподъемность 1,5 т, а остальные - 3 т. Две случайно оказавшиеся свободными машины были посланы за грузом. Его оказалось 5 т. Какова вероятность того, что посланные машины сумели его полностью забрать? 360. Вероятность работы (коэффициенты использования рабочего времени) двух комбайнов соответственно равны 0,8 и 0,6. Учитывая, что остановки в работе каждого комбайна случайны и независимы одна от другой, определить вероятности:
1) работы только одного комбайна;
2) простоя обоих комбайнов. 370. Среди поступающих на сборку деталей с первого станка 0,1% бракованных, со второго - 0,2%, с третьего - 0,25%, с четвертого - 0,5%. Производительности их относятся, как 4:3:2:1 соответственно. Взятая наудачу деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке. 380. При штамповке металлических клемм получается в среднем 90% годных. Найти вероятность наличия от 790 до 820 годных в партии из 900 клемм. 390. Дискретная случайная величина Х задана рядом распределения. Найти: математическое ожидание М(Х) случайной величины Х, дисперсию D(X), среднее квадратическое отклонение σ(Х), функцию распределения F(x). Построить графики ряда распределения и функции распределения. На графике ряда распределения показать математическое ожидание. 400. Непрерывная случайная величина Х задана функцией распределения F(x). Найти: плотность вероятности f(x), математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х) случайной величины; вероятность попадания случайной величины в интервал (α, β). Построить графики функций F(x) и f(x). 410. Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины Х. Найти вероятность попадания этой величины в заданный интервал (α, β).
Написать выражение для плотности распределения вероятности и построить график с учетом правила "3σ".
410. а=-1, σ=3, α=-5, β=1.