whatsappWhatsApp: +79119522521
telegramTelegram: +79119522521
Логин Пароль
и
для авторов
Выполненные работы

Высшая математика



Санкт-Петербургский государственный аграрный университет


Методичка 2003
Методичка 2003. Титульный лист

Министерство сельского хозяйства Российской Федерации
Санкт-Петербургский государственный аграрный университет
Кафедра высшей математики
Методические указания и контрольные задания
по курсу
ВЫСШЕЙ МАТЕМАТИКИ
для студентов - заочников II курса
инженерных факультетов
Составили:
Г.Н. Бражниченко
Т.Т. Исаева
Н.Н. Солдаткина
И.Н. Шоренко
Санкт-Петербург
2003

Стоимость выполнения контрольных работ по высшей математике уточняйте при заказе.
Стоимость одной готовой задачи уточняйте при заказе.
Готовы следующие варианты:

Вариант 3

Контрольная работа 4
203. Построив на плоскости ХОУ область интегрирования, вычислить ... по области (Д), ограниченной заданными линиями.
213. Даны криволинейный интеграл и три точки плоскости ХОУ: О(0,0), А(2,0), В(2,4).
Вычислить данный интеграл от точки О до точки В по трём различным контурам:
1) по ломаной ОАВ;
2) по отрезку прямой ОВ;
3) по дуге параболы y=х2.
Полученные результаты сравнить и объяснить их совпадение или несовпадение.
223. 1)Комплексное число изобразить вектором на комплексной плоскости и записать в тригонометрической и показательной формах;
2) решить уравнение.
3. z=-√3+3i 4z4+8z3+5z2=0
233. Дано дифференциальное уравнение первого порядка. Найти общее решение (общий интеграл) и частное решение, удовлетворяющее заданному начальному условию.
243. Даны дифференциальные уравнения второго порядка, допускающие понижение порядка. Найти частное решение, удовлетворяющее указанным начальным условиям.
253. Даны линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Найти общее решение.
263. Даны линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Применяя операционный метод, найти частное решение этих уравнений, удовлетворяющее указанным начальным условиям.
273. Даны системы линейных дифференциальных уравнений с постоянными коэффициентами. Применяя операционный метод, найти частные решения систем, удовлетворяющие указанным начальным условиям.

Контрольная работа 5
283. Исследовать на сходимость следующие ряды, используя при этом признаки сравнения, Даламбера и интегральный признак.
293. Исследовать ряд на абсолютную и условную сходимость.
303. Найти радиус, интервал и область сходимости степенного ряда.
313. Вычислить определённый интеграл с точностью до 0,001.
323. Дано дифференциальное уравнение первого порядка и соответствующее ему начальное условие. Найти решение этого уравнения, представив его в виде степенного ряда, содержащего три первых, отличных от нуля, члена разложения.
333. Разложить данную функцию f(x) в ряд Фурье в интервале (a, b).

Контрольная работа 6
343. В бригаде из 15 тракторов только 4 новые. Для работы выделено три трактора. Найти вероятность того, что все они новые.
353. В мастерскую по ремонту поступило 2 партии деталей. В первой партии деталей в 2 раза больше, чем во второй; качество деталей в первой партии более высокое. Из большого числа рассортированных деталей мастер наугад берёт две. Чему равны вероятности того, что взятые детали окажутся:
а) из одной партии;
б) из различных партий.
363. Литьё в болванках поступает из двух заготовительных цехов: 70% из первого и 30% из второго. При этом материал первого цеха имеет 10% брака, а второго – 20%. Найти вероятность того, что взятая наугад болванка без дефектов.
373. Вероятность выхода из строя изделия за время испытаний на надёжность равна 0,1. Какова вероятность того, что за время испытаний из 100 изделий выйдут не более 12 изделий?
383. Дискретная случайная величина Х задана рядом распределения. Найти: математическое ожидание М(Х) случайной величины Х, дисперсии D(X), среднее квадратичное отклонение σ(Х), функцию распределения F(x). Построить графики ряда распределения и функции распределения. На графике ряда распределения показать математическое ожидание.
393. Непрерывная случайная величина Х задана функцией распределения F(x). Найти: плотность вероятности f(x), математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х) случайной величины; вероятность попадания случайной величины в интервал (α, β). Построить графики функций F(x) и f(x).
403. Известны математическое ожидание а и среднее квадратическое отклонение σ нормально распределенной случайной величины Х. Найти вероятность попадания этой величины в заданный интервал (α, β).
Написать выражение для плотности распределения вероятности и построить график с учетом правила "3σ".
403. а=3, σ=3, α=1, β=4.

Вариант 0, Вариант 2, Вариант 3, Вариант 6, Вариант 7, Вариант 8, Вариант 9

показать все

Мы используем cookie. Продолжая пользоваться сайтом,
вы соглашаетесь на их использование.   Подробнее