Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
Санкт-Петербургский государственный университет
Аэрокосмического приборостроения Теория вероятностей
Варианты контрольных работ
Санкт-Петербург
2008
Стоимость выполнения одной контрольной работы уточняйте при заказе
Стоимость одного готового варианта контрольной работы уточняйте при заказе Готовы следующие варианты контрольных работ:
Контрольная работа 1:
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 19,21
Контрольная работа 2:
1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 16, 19, 21
Вариант 05
Контрольная работа 1.
1. Имеется 3 белых и 5 черных шара. Вынимают два. Найти вероятность того, что они разного цвета.
2. Известны вероятности независимых событий А, В, С:
р(А)= 0,3; р(В)= 0,8; р(С)= 0,5.
Определить вероятность того, что а)произойдет одно и только одно из этих событий, б)произойдет не более двух событий.
3.Изделие стандартно с вероятностью Р = 0,9. Найти вероятность того, что из трех изделий два стандартно.
4. На двух станках производят детали, причем на втором в два раза больше, чем на первом. Вероятность брака на первом станке – 0,01 ; на втором – 0,02. Найти вероятность того, что произвольно взятая деталь бракованная.
5. Из 20 стрелков шесть попадают в цель с вероятностью 0,8; девять – с вероятностью 0,5 и пять с вероятностью 0,2. Наудачу выбранный стрелок попал в цель. К какой из групп он вероятнее всего принадлежит?
Контрольная работа 2.
1.Известна вероятность события А: р(А)=0,5. Дискретная случайная величина ξ – число появлений А в трех опытах. Построить ряд распределения случайной величины ξ; найти ее математическое ожидание mξ и дисперсию Dξ.
2.Распределение дискретной случайной величины ξ содержит неизвестные значения х1 и х2 (...):...Известны числовые характеристики случайной величины: Mξ=4.8, Dξ=0,16. Требуется определить значения х1 и х2.
4.Случайная величина ξ имеет нормальное распределение с математическим ожиданием a=56 и среднеквадратичным отклонением 8. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.
5.Известно распределение системы двух дискретных случайных величин (ξ,n). Определить частные, условные (при ξ=-1,n=0) распределения и числовые характеристики системы случайных величин mξ, Dξ, mη, Dη, Kξ,η , rξ,η ; а также найти вероятность попадания двумерной случайной величины (ξ,n) в область ....