Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
Санкт-Петербургский государственный университет
Аэрокосмического приборостроения Теория вероятностей
Варианты контрольных работ
Санкт-Петербург
2008
Стоимость выполнения одной контрольной работы уточняйте при заказе
Стоимость одного готового варианта контрольной работы уточняйте при заказе Готовы следующие варианты контрольных работ:
Контрольная работа 1:
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 19,21
Контрольная работа 2:
1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 16, 19, 21
Вариант 08
Контрольная работа 1.
1. Из колоды в 52 карты выбирают 5. Найти вероятность того, что среди них один туз.
2. Известны вероятности независимых событий А, В, С:
р(А)= 0,5; р(В)= 0,6; р(С)= 0,4.
Определить вероятность того, что а)произойдет одно и только одно из этих событий, б)произойдет не более двух событий.
3.Деталь проходит три стадии обработки. Вероятность получения брака на первой стадии – 0,02; на второй – 0,06 и на третьей – 0,12. Какова вероятность изготовления бра-кованной детали?.
4. Имеется две партии изделий в 15 и 20 шт.; в первой два, во второй три бракованных. Одно изделие из первой переложили во вторую, после чего из второй берут одно наугад. Найти вероятность того, что оно бракованное.
5. Три охотника выстрелили по зверю, который был убит одной пулей. Найти вероятность того, что зверь был убит третьим стрелком, если вероятности попадания равны Р1 = 0,5; Р2 = 0,6; Р3 = 0,7.
Контрольная работа 2.
1.Известна вероятность события А: р(А)=0,3. Дискретная случайная величина ξ – число появлений А в трех опытах. Построить ряд распределения случайной величины ξ; найти ее математическое ожидание mξ и дисперсию Dξ.
2.Распределение дискретной случайной величины ξ содержит неизвестные значения х1 и х2 (...):...Известны числовые характеристики случайной величины: Mξ=5,6, Dξ=0,24. Требуется определить значения х1 и х2.
4.Случайная величина ξ имеет нормальное распределение с математическим ожиданием a=68 и среднеквадратичным отклонением 7. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,96.
5.Известно распределение системы двух дискретных случайных величин (ξ,n). Определить частные, условные (при ξ=1,n=0) распределения и числовые характеристики системы случайных величин mξ, Dξ, mη, Dη, Kξ,η , rξ,η ; а также найти вероятность попадания двумерной случайной величины (ξ,n) в область ....