Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
Санкт-Петербургский государственный университет
Аэрокосмического приборостроения Теория вероятностей
Варианты контрольных работ
Санкт-Петербург
2008
Стоимость выполнения одной контрольной работы уточняйте при заказе
Стоимость одного готового варианта контрольной работы уточняйте при заказе Готовы следующие варианты контрольных работ:
Контрольная работа 1:
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 19,21
Контрольная работа 2:
1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 16, 19, 21
Вариант 01
Контрольная работа 1.
1. Из 10 изделий, среди которых 4 бракованные, извлекают 3. Найти вероятность того, что среди них одно бракованное.
2. Известны вероятности независимых событий А, В, С:
р(А)= 0,5; р(В)= 0,4; р(С)= 0,6.
Определить вероятность того, что а)произойдет одно и только одно из этих событий, б)произойдет не более двух событий.
3.Вероятности попадания в цель: первого стрелка – 0,6; второго – 0,7; третьего – 0,8. Найти вероятность хотя бы одного попадания в цель при одновременном выстреле всех трех.
4. Известно, что 96 % продукции – стандартно. Упрощенный контроль признает годной стандартную продукцию с вероятностью 0,98 и нестандартную с вероятностью 0,05. Найти вероятность того, что признанное годным изделие – стандартно.
5. Имеется 4 радиолокатора. Вероятность обнаружить цель для первого – 0,86 ; для второго – 0,9 ; для третьего – 0,92 ; четвертого – 0,95. Включен один из них. Какова вероятность обнаружить цель?
Контрольная работа 2.
1.Известна вероятность события А: р(А)=0,3. Дискретная случайная величина ξ – число появлений А в трех опытах. Построить ряд распределения случайной величины ξ; найти ее математическое ожидание mξ и дисперсию Dξ.
2.Распределение дискретной случайной величины ξ содержит неизвестные значения х1 и х2 (...):...Известны числовые характеристики случайной величины: Mξ=3,6, Dξ=0,24. Требуется определить значения х1 и х2.
4.Случайная величина ξ имеет нормальное распределение с математическим ожиданием a=56 и среднеквадратичным отклонением 8. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.