Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
Санкт-Петербургский государственный университет
Аэрокосмического приборостроения Теория вероятностей
Варианты контрольных работ
Санкт-Петербург
2008
Стоимость выполнения одной контрольной работы уточняйте при заказе
Стоимость одного готового варианта контрольной работы уточняйте при заказе Готовы следующие варианты контрольных работ:
Контрольная работа 1:
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15, 16, 19,21
Контрольная работа 2:
1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 14, 16, 19, 21
Вариант 07
Контрольная работа 1.
1. Имеется 40 путевок, среди которых 15 на юг. Найти вероятность того, что из 10 взятых наугад 4 на юг.
2. Известны вероятности независимых событий А, В, С:
р(А)= 0,8; р(В)= 0,4; р(С)= 0,5.
Определить вероятность того, что а)произойдет одно и только одно из этих событий, б)произойдет не более двух событий.
3. Вероятность того, что произойдет одно и только одно событие из двух 0,44. Какова вероятность второго события, если вероятность первого – 0,8.br>
4. В коробке было 9 белых и 6 черных шара, два из которых потерялись. Первый наугад взятый шар оказался белым. Найти вероятность того, что потерялись два черных.
5. Из 18 стрелков пять попадают в цель с вероятностью Р1 = 0,8; семь с Р2 = 0,7; четыре с Р3=0,6 и два с Р4 0,5. Наудачу выбранный стрелок промахнулся. К какой из групп вероятнее всего он принадлежал?
Контрольная работа 2.
1.Известна вероятность события А: р(А)=0,8. Дискретная случайная величина ξ – число появлений А в трех опытах. Построить ряд распределения случайной величины ξ; найти ее математическое ожидание mξ и дисперсию Dξ.
2.Распределение дискретной случайной величины ξ содержит неизвестные значения х1 и х2 (...):...Известны числовые характеристики случайной величины: Mξ=4.6, Dξ=0,24. Требуется определить значения х1 и х2.
4.Случайная величина ξ имеет нормальное распределение с математическим ожиданием a=56 и среднеквадратичным отклонением 8. Найти интервал, симметричный относительно математического ожидания, вероятность попадания в который равна Р=0,95.
5.Известно распределение системы двух дискретных случайных величин (ξ,n). Определить частные, условные (при ξ=-1,n=0) распределения и числовые характеристики системы случайных величин mξ, Dξ, mη, Dη, Kξ,η , rξ,η ; а также найти вероятность попадания двумерной случайной величины (ξ,n) в область ....