Автор сборника Л.Н. Пронин "Сборник заданий по теории вероятностей". Выдается (как правило) студентам-очникам в качестве домашней работы на 2 курсе обучения. Третий семестр - первая и вторая самостоятельная работа. Четвертый семестр - третья самостоятельная работа.
Сборник составлен для обеспечения самостоятельной практической работы студентов по курсу теории вероятностей. Содержание заданий соответствует действующей программе по высшей математике и охватывает все ключевые темы этого раздела математика. Задания могут быть использованы и для проведения аудиторных занятий. Однако большая часть задач требует достаточно большого времени для их осмысления и решения, и по этой причине, выполнять задания рекомендуется в свободное от занятий время, тем более, если принять во внимание недостаточность аудиторного времени для практических занятий, отпущенного по учебному плану. Предусматривается выполнения трех заданий в течение семестра. Индивидуальность работы студентов обеспечивается достаточно большим количеством вариантов (тридцать в каждом задании) и последующим собеседованием при отчете о выполнении задания
Характерной особенностью предлагаемых заданий является неформальность содержания большинства задач. Выполнение заданий требует определенной теоретической подготовки и знакомства с решением аналогичных задач.В работах этого списка студент может найти все необходимое.
Стоимость решения Заданий из сборника Пронин теория вероятностей, купить готовые решения по теорверу
Задание 2. Вариант 17
Задача 1. Профессор Петров решил задавать дополнительные вопросы отличнику Сидорову до тех пор, пока тот ответит неправильно. Вероятность того, что Сидоров знает правильный ответ равна 0,95. Случайная величина Х- число дополнительных вопросов.
Требуется
1) Составить таблицу распределения случайно величины Х
2) Построить многоугольник распределения
3) Найти функцию распределения и построить ее график
4) Найти математическое ожидание, дисперсию и средне квадратическое отклонение случайной величины Х
5) Найти вероятность P(X<9)
Задача 2. Непрерывная случайная величина Х задана с помощью функции распределения:
Требуется
1) Найти неизвестные коэффициенты
2) Построить график функции распределения
3) Найти функцию плотности вероятностей и построить ее график
4) Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайно величины Х
5) Найти вероятность P(e<X<p)
Задача 3. Непрерывная случайная величина Х задача с помощью функции плотности распределения (ошибка в условии задачи в сборнике, у нас есть исправленное условие с решенной задачей):
Требуется
1) Найти неизвестные коэффициенты
2) Построить график функции плотности вероятностей
3) Найти функцию распределения и построить ее график
4) Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х
5) Найти вероятность P(X>2)
Задача 4. Заданы функция плотности нормального распределения и интервал (-1;7). Требуется
1) Найти математическое ожидание m
2) Найти среднее квадратическое отклонение s и дисперсию D
3) Найти неизвестные коэффициент А
4) Найти вероятность попадания случайное величины в заданный интервал
5) Построить график функции плотности и на нем отметить площадь, равную найденной вероятности
Задача 5. Число X солнечных дней в году для данной местности составляет в среднем 100+/-20. С помощью неравенства Чебышева оценить сверху вероятности событий X120 и X180. Найти вероятности этих событий, если известно, что X подчиняется закону Гаусса.