Санкт-Петербургский государственный университет промышленных технологий и дизайна
Методичка 2018 (контрольная работа 7 и 8)
Министерство образования и науки Российской Федерации
федеральное государственное бюджетное образовательное учреждение
высшего образования
Санкт-Петербургский государственный университет
промышленных технологии и дизайна
Кафедра математики МАТЕМАТИКА
Методические указания и контрольные задания 7 и 8
для студентов заочной формы обучения
Направления подготовки:
15.03.02 – Технологические машины и оборудование
15.03.04 – Автоматизация технологических процессов и производств
Составитель:
Г. П. Мещерякова
Санкт-Петербург
2018
Стоимость решения контрольной работы уточняйте при заказе.
Стоимость готовой контрольной работы по математике указана напротив каждой работы, можно приобрести решение онлайн.
Решение подробно расписано в печатном виде, формат файла word + копия в pdf. Выполнены следующие варианты: (можно купить решенные ранее задания по высшей математике онлайн и мгновенно получить на email)
В09_КР7
Контрольная работа № 7
1. Классическое определение вероятности. Теоремы сложения и умножения вероятностей.
1.9. Вероятность того, что деталь изготовленная на первом станке будет первосортной равна 0,7. При изготовлении такой же детали на втором станке эта вероятность равна 0,8. На первом станке изготовлены две детали, а на втором – три. Найти вероятность того, что все детали первосортные.
2. Формула полной вероятности. Формула Байеса. (решение этой здачи отсутствует!)
2.9 Студент сдает зачет, причем получает один вопрос из трех разделов. Первые два раздела одинаковы по объему, а третий в два раза больше первого. Студент знает ответы на 70 % вопросов первого раздела, на 50% вопросов второго и на 80 % вопросов третьего. Студент зачет сдал. Найти вероятность того, что ему попался вопрос из второго раздела.
3. Дискретные случайные величины.
3.9 Вероятность получения положительного результата в каждом из независимых опытов равна 0,9. Найдите закон распределения случайной величины X, равной числу положительных результатов в 4 опытах. Найдите M(X) и D(X).
4. Нормальный закон распределения
4.9 Время, необходимое для ремонта прибора, – случайная величина, подчиненная нормальному закону распределения с математически ожиданием 3 ч и дисперсией 0,25 ч2. Какова вероятность того, что за 8 -и часовую смену прибор удастся отремонтировать.