Санкт-Петербургский государственный университет промышленных технологий и дизайна
Методичка 2018 (контрольная работа 7 и 8)
Министерство образования и науки Российской Федерации
федеральное государственное бюджетное образовательное учреждение
высшего образования
Санкт-Петербургский государственный университет
промышленных технологии и дизайна
Кафедра математики МАТЕМАТИКА
Методические указания и контрольные задания 7 и 8
для студентов заочной формы обучения
Направления подготовки:
15.03.02 – Технологические машины и оборудование
15.03.04 – Автоматизация технологических процессов и производств
Составитель:
Г. П. Мещерякова
Санкт-Петербург
2018
Стоимость решения контрольной работы уточняйте при заказе.
Стоимость готовой контрольной работы по математике указана напротив каждой работы, можно приобрести решение онлайн.
Решение подробно расписано в печатном виде, формат файла word + копия в pdf. Выполнены следующие варианты: (можно купить решенные ранее задания по высшей математике онлайн и мгновенно получить на email)
В08_КР8
Контрольная работа № 8
1. Построить доверительный интервал для математического ожидания α нормально распределенной генеральной совокупности с известным среднеквадратичным отклонением σ с помощью выборки объема n с данным средним выборочным x, с заданной надежностью γ = 0,90.
1.8. x = 75.10, n = 169, σ = 13
2. Исследовать статистически случайную величину X – прочность (разрывная нагрузка), мН, пряжи линейной плотности 18,5 текс. Для этого произведена выборка объема n=40. Результаты испытаний приведены в таблице.
2.8
171
168
182
201
146
176
152
180
173
169
208
184
178
158
194
188
203
189
206
156
172
211
197
177
186
200
138
156
168
181
145
132
217
160
130
205
154
163
178
196
3. Найти выборочное уравнение прямой Y – y = r ∙ σy/σx (X - x) регрессии Yна X по данной корреляционной таблице.
3.8
X
Y
15
20
25
30
35
45
ny
25
4
2
-
-
-
-
6
35
-
6
4
-
-
-
10
45
-
-
6
45
2
-
53
55
-
-
2
8
6
-
16
65
-
-
-
4
7
4
15
nx
4
8
12
57
15
4
n=100
4. Найти по заданному вариационному ряду выборки выборочное среднее x, выборочную дисперсию S2, исправленную выборочную дисперсию s2.