whatsappWhatsApp: +79119522521
telegramTelegram: +79119522521
Логин Пароль
и
для авторов
Выполненные ранее работы и работы на заказ

Заочное отделение ФЭМ СПбГТИ(ТУ)

(модуль) Теория анализа и статистика

Контрольная работа
Контрольная работа. Титульный лист

ФЭМ СПБГТИ (ТУ)
СДО ФЭМ
Система дистанционного обучения.

Для сдачи предмета "(модуль) Теория анализа и статистика" необходимо выполнить контрольную работу (индивидуальное задание).
За ее выполнение дают максимум 25 баллов.
За выполненную нами работу дают от 19 баллов.
Без выполнения индивидуального задания, предмет не сдать (по тестам максимум можно набрать 60 баллов).
Стоимость выполнения индивидуального задания по модулю Теория анализа и статистика уточняйте при заказе.

У каждого студента свой вариант.
Номер работы закрепляется за каждым студентом и не меняется в течение всего периода
обучения.

Контрольная работа для проверки преподавателем содержит 75 вариантов.

Вариант 25

1. Функция издержек имеет вид 𝐶(𝑥)=10+𝑥210. На начальном этапе фирма организует производство так, чтобы минимизировать средние издержки 𝐴(𝑥). В дальнейшем на товар устанавливается цена, равная 4 ден. ед. за единицу. На сколько единиц товара фирме следует увеличить выпуск?

2. Идентифицированы функция издержек 𝐶(𝑥), а также функция количества реализованного товара 𝐾(𝑝,𝑥) при установленной цене его единицы, равной 𝑝 (𝑝>𝑝0). Найти оптимальные значения x и p для монополиста-производителя:
𝐶(𝑥)=10+𝑥2; 𝐾(𝑥,𝑝)=𝑥/1+𝑝2/16.

3. Найти выигрыши потребителей и поставщиков в предположении установления рыночного равновесия, если законы спроса и предложения имеют вид 𝑝=186−𝑥2, 𝑝=20+11/6∙𝑥.

4. Изменение численности населения горнорудного поселка с течением времени описывается следующим уравнением:
𝑦′ =0,3∙𝑦∙(2−10−4∙𝑦),
где 𝑦=𝑦(𝑡); 𝑡 – время в годах. В начальный момент времени население поселка составляло 500 человек. Каким оно станет через три года?

5. Устройство состоит из 1000 элементов, работающих независимо один от другого. Вероятность отказа любого элемента в течение времени t равна 0,002. Необходимо: а) составить закон распределения отказавших за время t элементов; б) найти математическое ожидание и дисперсию этой случайной величины; в) определить вероятность того, что за время t откажет хотя бы один элемент.

Вариант 01, Вариант 02, Вариант 03, Вариант 04, Вариант 05, Вариант 06, Вариант 07, Вариант 08, Вариант 09, Вариант 10, Вариант 11, Вариант 12, Вариант 13, Вариант 14, Вариант 15, Вариант 16, Вариант 17, Вариант 18, Вариант 19, Вариант 20, Вариант 21, Вариант 22, Вариант 23, Вариант 24, Вариант 25, Вариант 26, Вариант 27, Вариант 28, Вариант 29, Вариант 30, Вариант 31, Вариант 32, Вариант 33, Вариант 34, Вариант 35, Вариант 36, Вариант 37, Вариант 38, Вариант 39, Вариант 40, Вариант 41, Вариант 42, Вариант 43, Вариант 44, Вариант 45, Вариант 46, Вариант 47, Вариант 48, Вариант 49, Вариант 50

показать все


Мы используем cookie. Продолжая пользоваться сайтом,
вы соглашаетесь на их использование.   Подробнее