whatsappWhatsApp: +79119522521
telegramTelegram: +79119522521
Логин Пароль
и
для авторов
Выполненные ранее работы и работы на заказ

Заочное отделение ФЭМ СПбГТИ(ТУ)

(модуль) Теория анализа и статистика

Контрольная работа
Контрольная работа. Титульный лист

ФЭМ СПБГТИ (ТУ)
СДО ФЭМ
Система дистанционного обучения.

Для сдачи предмета "(модуль) Теория анализа и статистика" необходимо выполнить контрольную работу (индивидуальное задание).
За ее выполнение дают максимум 25 баллов.
За выполненную нами работу дают от 19 баллов.
Без выполнения индивидуального задания, предмет не сдать (по тестам максимум можно набрать 60 баллов).
Стоимость выполнения индивидуального задания по модулю Теория анализа и статистика уточняйте при заказе.

У каждого студента свой вариант.
Номер работы закрепляется за каждым студентом и не меняется в течение всего периода
обучения.

Контрольная работа для проверки преподавателем содержит 75 вариантов.

Вариант 37

1. Монополия производит фиксированное количество x единиц товара и устанавливает цену единицы товара 𝑝>𝑝0. Количество реализованного товара K зависит от p следующим образом:
𝐾(𝑝)=𝑥∙𝑒𝑝0−𝑝(𝑝0<1),
где 𝑝0 – цена, при которой будет реализован весь товар. Определить значение p, при котором монополия получит максимальную прибыль.

2. Дана матрица прямых затрат 𝐴=...
Найти: а) вектор валовой продукции X для обеспечения выпуска конечной продукции 𝑌=(...); б) приращение вектора ∆𝑋 для увеличения выпуска конечной продукции на ∆𝑌=(...).

3. Производственная функция 𝜋(𝑥,𝑦)=30∙√𝑥∙∛𝑦, стоимость единицы первого ресурса равна 5, второго – 10 ден. ед. В силу бюджетных ограничений на ресурсы может быть потрачено не более 600 (ден. ед.). В этих условиях найти оптимальное для производителя значение (𝑥,𝑦) количества используемых ресурсов.

4. Найти объем выпускаемой продукции за пять лет, если в функции Кобба–Дугласа 𝐴(𝑡)=𝑒𝑡, 𝐿(𝑡)=(𝑡+1)2, 𝐾(𝑡)=(100−3∙𝑡) 2, 𝛼=1, 𝛽=𝛾=0,5 (t – время в годах).

5. Случайная величина X имеет показательное распределение с параметром 3 = λ . Найти вероятность попадания этой случайной величины в промежуток (0; +∞). Построить график плотности этого распределения и указать на нем фигуру, соответствующую найденной вероятности. Найти математическое ожидание Xи показать его на графике.

Вариант 01, Вариант 02, Вариант 03, Вариант 04, Вариант 05, Вариант 06, Вариант 07, Вариант 08, Вариант 09, Вариант 10, Вариант 11, Вариант 12, Вариант 13, Вариант 14, Вариант 15, Вариант 16, Вариант 17, Вариант 18, Вариант 19, Вариант 20, Вариант 21, Вариант 22, Вариант 23, Вариант 24, Вариант 25, Вариант 26, Вариант 27, Вариант 28, Вариант 29, Вариант 30, Вариант 31, Вариант 32, Вариант 33, Вариант 34, Вариант 35, Вариант 36, Вариант 37, Вариант 38, Вариант 39, Вариант 40, Вариант 41, Вариант 42, Вариант 43, Вариант 44, Вариант 45, Вариант 46, Вариант 47, Вариант 48, Вариант 49, Вариант 50

показать все


Мы используем cookie. Продолжая пользоваться сайтом,
вы соглашаетесь на их использование.   Подробнее